Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Neurol Neurosurg Psychiatry ; 94(4): 280-283, 2023 04.
Article in English | MEDLINE | ID: covidwho-2285171

ABSTRACT

BACKGROUND: It is unclear which patients with multiple sclerosis (MS) are most susceptible for omicron breakthrough infections. METHODS: We assessed omicron breakthrough infections in vaccinated patients with MS with and without disease-modifying therapies enrolled in an ongoing large prospective study. We longitudinally studied humoral responses after primary and booster vaccinations and breakthrough infections. RESULTS: Omicron breakthrough infections were reported in 110/312 (36%) patients with MS, and in 105/110 (96%) infections were mild. Omicron breakthrough infections occurred more frequently in patients treated with anti-CD20 therapies and sphingosine-1 phosphate receptor (S1PR) modulators, patients with impaired humoral responses after primary immunisation (regardless of treatment) and patients without prior SARS-CoV-2 infections. After infection, antibody titres increased in patients on S1PR modulator treatment while anti-CD20 treated patients did not show an increase. CONCLUSIONS: SARS-COV-2 omicron breakthrough infections are more prevalent in patients with MS on anti-CD20 therapies and S1PR modulators compared with other patients with MS, which correlated with decreased humoral responses after vaccination. Humoral responses after infection were higher in S1PR modulator-treated patients in comparison to patients on anti-CD20 therapies, suggesting that immunological protection from contracting infection or repeated exposures may differ between these therapies.


Subject(s)
COVID-19 , Multiple Sclerosis , Sphingosine 1 Phosphate Receptor Modulators , Humans , SARS-CoV-2 , Multiple Sclerosis/complications , Breakthrough Infections , Prospective Studies , Antibodies, Viral
2.
J Allergy Clin Immunol ; 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2282572

ABSTRACT

BACKGROUND: CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES: We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS: Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS: In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION: Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.

3.
Ann Neurol ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2236562

ABSTRACT

Ocrelizumab, an anti-CD20 monoclonal antibody, counteracts induction of humoral immune responses after severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccinations in patients with multiple sclerosis (MS). We aimed to assess if serum ocrelizumab concentration measured at the time of vaccination could predict the humoral response after SARS-CoV-2 vaccination. In 52 patients with MS, we found ocrelizumab concentration at the time of vaccination to be a good predictor for SARS-CoV-2 IgG anti-RBD titers after vaccination (comparable to B-cell count). As the course of ocrelizumab concentration may be predicted using pharmacokinetic models, this may be a superior biomarker to guide optimal timing for vaccinations in B-cell depleted patients with MS. ANN NEUROL 2022.

4.
Frontiers in neurology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2126157

ABSTRACT

Introduction During the COVID-19 pandemic, certain disease modifying therapies (DMTs) used in multiple sclerosis (MS), such as anti-CD20 therapies, have been associated with decreased humoral responses after SARS-CoV-2 vaccination. Hybrid immunity, referring to immunity after both vaccination and SARS-CoV-2 infection might increase humoral responses. Methods This was a substudy of two prospective cohort studies on SARS-CoV-2 antibodies after SARS-CoV-2 infection and vaccination. RBD-specific IgG titers of patients with MS and healthy controls who had experienced SARS-CoV-2 infection prior to the first vaccination were compared with those patients and healthy controls without prior infection. Humoral responses were measured at various time points after SARS-CoV-2 infection in convalescent patients and all patients prior to the first vaccination, 28 days after the first vaccination, and 28 days after the second vaccination. Results One hundred and two individuals [of which 34 patients with MS and DMTs (natalizumab or ocrelizumab), 30 patients without DMTs, and 38 healthy controls] were included. Fifty one of these individuals were convalescent. Median SARS-CoV-2 antibody titers were higher after the first vaccination in convalescent individuals compared with individuals without infection prior to vaccination. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers were comparable after the second vaccination in patients with MS with and without prior infection. However, in the convalescent ocrelizumab-treated patients, SARS-CoV-2 antibody titers did not increase after vaccinations. Conclusion In patients with MS without anti-CD20 therapies, SARS-CoV-2 infection before vaccination increases humoral responses after the first vaccination, similar to the healthy controls. In patients with MS treated with ocrelizumab (convalescent and non-convalescent), humoral responses remained low.

6.
Clin Transl Immunology ; 11(10): e1423, 2022.
Article in English | MEDLINE | ID: covidwho-2127656

ABSTRACT

Objectives: High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods: CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results: A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion: SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.

7.
Clinical & translational immunology ; 11(10), 2022.
Article in English | EuropePMC | ID: covidwho-2073919

ABSTRACT

Objectives High‐magnitude CD8+ T cell responses are associated with mild COVID‐19 disease;however, the underlying characteristics that define CD8+ T cell‐mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope‐specific CD8+ T cells remain largely unexplored and are essential for the development of next‐generation broad‐protective vaccines. This study identified a broad spectrum of conserved SARS‐CoV‐2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS‐CoV‐2 infection. Methods CD8+ T cells from 51 convalescent COVID‐19 donors were analysed for their ability to recognise 133 predicted and previously described SARS‐CoV‐2‐derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in‐depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results A comprehensive panel of 49 mostly conserved SARS‐CoV‐2‐specific CD8+ T cell epitopes, including five newly identified low‐magnitude epitopes, was established. We confirmed the immunodominance of HLA‐A*01:01/ORF1ab1637–1646 and B*07:02/N105–113 and identified B*35:01/N325–333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361–369 and A*02:01/S269–277, depended on the donors' HLA‐I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID‐19 donors. Conclusion SARS‐CoV‐2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS‐CoV‐2 epitopes, which likely contributes to long‐term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross‐reactive immune response, which could aid future vaccine strategies. Fifty‐one convalescent COVID‐19 donors were analysed for their ability to recognise 133 predicted SARS‐CoV‐2‐derived peptides restricted by 11 common HLA‐I allotypes using heterotetramer combinatorial coding. Forty‐nine mostly conserved SARS‐CoV‐2‐specific CD8+ T cell epitopes, including five new, were identified. This study revealed three dominant epitopes (HLA‐A*01:01/ORF1ab1637–1646, B*07:02/N105–113 and B*35:01/N325–333). The magnitude of subdominant epitope responses, including HLA‐A*03:01/N361–369 and A*02:01/S269–277, largely depended on the donors' HLA context. All epitopes had a prevalent memory phenotype, which were significantly higher in severe COVID‐19 donors.

8.
Journal of Neuromuscular Diseases ; 9:S110, 2022.
Article in English | EMBASE | ID: covidwho-2043397

ABSTRACT

Importance: Viral infection or vaccination has the potential to increase disease activity in immune-mediated neuromuscular diseases. Objective: We aimed to evaluate whether SARSCoV- 2 vaccination and infection leads to increase of disease activity in patients with immune-mediated neuromuscular diseases. Methods: This is an interim analysis of a subset of patients from an ongoing prospective multi-center cohort study on SARS-CoV-2 vaccination in patients with various immune mediated inflammatory diseases in the Netherlands, the Target to-B!-COVID study (T2B!). Patients received digital questionnaires every two months from study entry to assess disease activity compared to previous visit using a 5-point Likert scale. In addition, in case of SARS CoV-2 infection (prior to vaccination) patients received an extra questionnaire to assess disease activity in the four weeks after infection. In cases of self-reported increase of disease activity, medical files were used to assess whether disease activity was reported by the treating physician, and whether changes were made in type or dose of immunosuppressive or immunomodulating treatment. Results: In total, we included 303 patients with immune-mediated neuromuscular disease of which 127 patients with inflammatory neuropathies, 133 patients with myasthenia gravis, and 43 patients with myositis. In the four months after completed vaccination, 67 (22.1%) patients indicated an increase in disease activity, of which 62 (93%) was reported as worse and 5 (7%) as much worse. In 10 (3.3%) of the cases with self-reported increase, disease activity was also reported by the treating physician in the medical chart. In 4 (1.3%) of patients with self-reported increase disease activity treatment was adjusted because of the increase in disease activity. A SARS-CoV-2 infection prior to vaccination occurred in 24 (8%) patients, from which 3 (12.5%) indicated an increase in disease activity, not leading to change in treatment. Conclusion: Increase of disease activity after SARS-CoV-2 vaccination or infection was reported infrequently, and was self-limiting in most cases. Findings from our cohort may help physicians in neuromuscular disease to adequately inform patients on the risk of increased disease activity due to SARS-CoV-2 vaccination or infection. Full and verified results will be reported at the ICNMD 2022.

9.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: covidwho-1954755

ABSTRACT

Background: Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods: The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results: OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions: Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding: This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Multiple Sclerosis , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Arthritis, Rheumatoid/drug therapy , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccination , Viral Vaccines/genetics
10.
Neurol Neuroimmunol Neuroinflamm ; 9(4)2022 07.
Article in English | MEDLINE | ID: covidwho-1833441

ABSTRACT

OBJECTIVES: To evaluate whether a third vaccination shows an added effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell responses in patients with multiple sclerosis treated with ocrelizumab or fingolimod. METHODS: This is a substudy of a prospective multicenter study on SARS-CoV-2 vaccination in patients with immune-mediated diseases. Patients with MS treated with ocrelizumab, fingolimod, and no disease-modifying therapies and healthy controls were included. The number of interferon (IFN)-γ secreting SARS-CoV-2-specific T cells at multiple time points before and after 3 SARS-CoV-2 vaccinations were evaluated. RESULTS: In ocrelizumab-treated patients (N = 24), IFN-γ-producing SARS-CoV-2-specific T-cell responses were induced after 2 vaccinations with median levels comparable to healthy controls (N = 12) and patients with MS without disease-modifying therapies (N = 10). A third vaccination in ocrelizumab-treated patients (N = 8) boosted T-cell responses that had declined after the second vaccination, but did not lead to higher overall T-cell responses as compared to immediately after a second vaccination. In fingolimod-treated patients, no SARS-CoV-2-specific T cells were detected after second (N = 12) and third (N = 9) vaccinations. DISCUSSION: In ocrelizumab-treated patients with MS, a third SARS-CoV-2 vaccination had no additive effect on the maximal T-cell response but did induce a boost response. In fingolimod-treated patients, no T-cell responses could be detected following both a second and third SARS-CoV-2 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Multiple Sclerosis , T-Lymphocytes , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Fingolimod Hydrochloride/therapeutic use , Humans , Immunization, Secondary , Interferon-gamma , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Prospective Studies , SARS-CoV-2 , T-Lymphocytes/immunology , Vaccination
11.
RMD Open ; 8(1)2022 04.
Article in English | MEDLINE | ID: covidwho-1779410

ABSTRACT

BACKGROUND: Research on the disease severity of COVID-19 in patients with rheumatic immune-mediated inflammatory diseases (IMIDs) has been inconclusive, and long-term prospective data on the development of SARS-CoV-2 antibodies in these patients are lacking. METHODS: Adult patients with rheumatic IMIDs from the Amsterdam Rheumatology and Immunology Center, Amsterdam were invited to participate. All patients were asked to recruit their own sex-matched and age-matched control subject. Clinical data were collected via online questionnaires (at baseline, and after 1-4 and 5-9 months of follow-up). Serum samples were collected twice and analysed for the presence of SARS-CoV-2-specific antibodies. Subsequently, IgG titres were quantified in samples with a positive test result. FINDINGS: In total, 3080 consecutive patients and 1102 controls with comparable age and sex distribution were included for analyses. Patients were more frequently hospitalised compared with controls when infected with SARS-CoV-2; 7% vs 0.7% (adjusted OR: 7.33, 95% CI: 0.96 to 55.77). Only treatment with B-cell targeting therapy was independently associated with an increased risk of COVID-19-related hospitalisation (adjusted OR: 14.62, 95% CI: 2.31 to 92.39). IgG antibody titres were higher in hospitalised compared with non-hospitalised patients, and slowly declined with time in similar patterns for patients in all treatment subgroups and controls. INTERPRETATION: We observed that patients with rheumatic IMIDs, especially those treated with B-cell targeting therapy, were more likely to be hospitalised when infected with SARS-CoV-2. Treatment with conventional synthetic disease-modifying antirheumatic drugs (DMARDs) and biological DMARDs other than B-cell targeting agents is unlikely to have negative effects on the development of long-lasting humoral immunity against SARS-CoV-2.


Subject(s)
COVID-19 , Rheumatic Diseases , Adult , COVID-19/epidemiology , Humans , Prospective Studies , Rheumatic Diseases/complications , SARS-CoV-2 , Severity of Illness Index
13.
Mult Scler Relat Disord ; 57: 103416, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611928

ABSTRACT

OBJECTIVE: The objective of this study was to measure humoral responses after SARS-CoV-2 vaccination in MS patients treated with ocrelizumab (OCR) compared to MS patients without disease modifying therapies (DMTs) in relation to timing of vaccination and B-cell count. METHODS: OCR treated patients were divided into an early and a late group (cut-off time 12 weeks between infusion and first vaccination). Patients were vaccinated with mRNA-1273 (Moderna). B-cells were measured at baseline (time of first vaccination) and SARS-CoV-2 antibodies were measured at baseline, day 28, 42, 52 and 70. RESULTS: 87 patients were included (62 OCR patients, 29 patients without DMTs). At day 70, seroconversion occurred in 39.3% of OCR patients compared to 100% of MS patients without DMTs. In OCR patients, seroconversion varied between 26% (early group) to 50% (late group) and between 27% (low B-cells) to 56% (at least 1 detectable B-cell/µL). CONCLUSIONS: Low B-cell counts prior to vaccination and shorter time between OCR infusion and vaccination may negatively influence humoral response but does not preclude seroconversion. We advise OCR treated patients to get their first vaccination as soon as possible. In case of an additional booster vaccination, timing of vaccination based on B-cell count and time after last infusion may be considered.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Monoclonal, Humanized , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
14.
Lancet Rheumatol ; 3(11): e778-e788, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1347891

ABSTRACT

BACKGROUND: Data are scarce on immunogenicity of COVID-19 vaccines in patients with autoimmune diseases, who are often treated with immunosuppressive drugs. We aimed to investigate the effect of different immunosuppressive drugs on antibody development after COVID-19 vaccination in patients with autoimmune diseases. METHODS: In this study, we used serum samples collected from patients with autoimmune diseases and healthy controls who were included in two ongoing prospective cohort studies in the Netherlands. Participants were eligible for inclusion in this substudy if they had been vaccinated with any COVID-19 vaccine via the Dutch national vaccine programme, which at the time was prioritising vaccination of older individuals. Samples were collected after the first or second COVID-19 vaccination. No serial samples were collected. Seroconversion rates and IgG antibody titres against the receptor-binding domain of the SARS-CoV-2 spike protein were measured. Logistic and linear regression analyses were used to investigate the association between medication use at the time of vaccination and at least until sampling, seroconversion rates, and IgG antibody titres. The studies from which data were collected are registered on the Netherlands Trial Register, Trial ID NL8513, and ClinicalTrials.org, NCT04498286. FINDINGS: Between April 26, 2020, and March 1, 2021, 3682 patients with rheumatic diseases, 546 patients with multiple sclerosis, and 1147 healthy controls were recruited to participate in the two prospective cohort studies. Samples were collected from patients with autoimmune diseases (n=632) and healthy controls (n=289) after their first (507 patients and 239 controls) or second (125 patients and 50 controls) COVID-19 vaccination. The mean age of both patients and controls was 63 years (SD 11), and 423 (67%) of 632 patients with autoimmune diseases and 195 (67%) of 289 controls were female. Among participants without previous SARS-CoV-2 infection, seroconversion after first vaccination were significantly lower in patients than in controls (210 [49%] of 432 patients vs 154 [73%] of 210 controls; adjusted odds ratio 0·33 [95% CI 0·23-0·48]; p<0·0001), mainly due to lower seroconversion in patients treated with methotrexate or anti-CD20 therapies. After the second vaccination, seroconversion exceeded 80% in all patient treatment subgroups, except among those treated with anti-CD20 therapies (three [43%] of seven patients). We observed no difference in seroconversion and IgG antibody titres between patients with a previous SARS-CoV-2 infection who had received a single vaccine dose (72 [96%] of 75 patients, median IgG titre 127 AU/mL [IQR 27-300]) and patients without a previous SARS-CoV-2 infection who had received two vaccine doses (97 [92%] of 106 patients, median IgG titre 49 AU/mL [17-134]). INTERPRETATION: Our data suggest that seroconversion after a first COVID-19 vaccination is delayed in older patients on specific immunosuppressive drugs, but that second or repeated exposure to SARS-CoV-2, either via infection or vaccination, improves humoral immunity in patients treated with immunosuppressive drugs. Therefore, delayed second dosing of COVID-19 vaccines should be avoided in patients receiving immunosuppressive drugs. Future studies that include younger patients need to be done to confirm the generalisability of our results. FUNDING: ZonMw, Reade Foundation, and MS Center Amsterdam.

16.
Clin Transl Immunology ; 10(5): e1285, 2021.
Article in English | MEDLINE | ID: covidwho-1233184

ABSTRACT

OBJECTIVES: Characterisation of the human antibody response to SARS-CoV-2 infection is vital for serosurveillance purposes and for treatment options such as transfusion with convalescent plasma or immunoglobulin products derived from convalescent plasma. In this study, we longitudinally and quantitatively analysed antibody responses in RT-PCR-positive SARS-CoV-2 convalescent adults during the first 250 days after onset of symptoms. METHODS: We measured antibody responses to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the nucleocapsid protein in 844 longitudinal samples from 151 RT-PCR-positive SARS-CoV-2 convalescent adults. With a median of 5 (range 2-18) samples per individual, this allowed quantitative analysis of individual longitudinal antibody profiles. Kinetic profiles were analysed by mixed-effects modelling. RESULTS: All donors were seropositive at the first sampling moment, and only one donor seroreverted during follow-up analysis. Anti-RBD IgG and anti-nucleocapsid IgG levels declined with median half-lives of 62 and 59 days, respectively, 2-5 months after symptom onset, and several-fold variation in half-lives of individuals was observed. The rate of decline of antibody levels diminished during extended follow-up, which points towards long-term immunological memory. The magnitude of the anti-RBD IgG response correlated well with neutralisation capacity measured in a classic plaque reduction assay and in an in-house developed competitive assay. CONCLUSION: The result of this study gives valuable insight into the long-term longitudinal response of antibodies to SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL